EQCMD Monitoring of Zeolite Synthesis

Rafael Ecker, Nikolaus Doppelhammer, Bernhard Jakoby, Erwin Reichel

Research output: Chapter in Book/Report/Conference proceedingConference proceedings

Abstract

The design and fabrication of a dual electrochemical quartz crystal microbalance sensor unit with dissipation monitoring (EQCMD) for in situ monitoring of crystallization processes, such as the formation of zeolites from liquid media, is reported. The integrated temperature unit is based on Peltier elements and precision temperature sensors with accurate and fast temperature control. In this design, two thickness-shear mode quartz disk resonators are oppositely arranged, enabling the application of an electric field through the sample while concurrently being able to monitor the resonance frequencies and quality factors of both resonators. As demonstrated experimentally, this allows for the characterization of the sample by means of the viscosity, via the acoustic impedance, and the electrical conductivity. Experiments with test fluids showed quite reliable results. Monitoring zeolite formation based on these parameters, however, turned out to be challenging, mainly because the electrodes suffered from severe corrosion. Despite the use of chemically resistant materials and insulating coatings, the electrodes were attacked by the reaction medium, presumably due to surface defects.
Original languageEnglish
Title of host publicationMESS22 Microelectronic Systems Symposium
Editors OVE Österreichischer Verband für Elektrotechnik
Pages12
Number of pages1
Publication statusPublished - Jun 2022

Fields of science

  • 202019 High frequency engineering
  • 202021 Industrial electronics
  • 202036 Sensor systems
  • 203017 Micromechanics
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202028 Microelectronics
  • 202037 Signal processing
  • 502058 Digital transformation

JKU Focus areas

  • Digital Transformation

Cite this