End-to-End Learning of Pharmacological Assays from High-resolution Microscopy Images

Markus Hofmarcher, Elisabeth Rumetshofer, Markus Holzleitner, Bernhard Schäfl, Sepp Hochreiter, Günter Klambauer

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Predicting the outcome of pharmacological assays based on high-resolution microscopy images of treated cells is a crucial task in drug discovery which tremendously increases discovery rates. However, end-to-end learning on these images with convolutional neural networks (CNNs) has not been ventured for this task because it has been considered infeasible and overly complex. On the largest available public dataset, we compare several state-of-the-art CNNs trained in an end-to-end fashion with models based on a cell-centric approach involving segmentation. We found that CNNs operating on full images containing hundreds of cells perform significantly better at assay prediction than networks operating on a single-cell level. Surprisingly, we could predict 29% of the 209 pharmacological assays at high predictive performance (AUC > 0.9).
Original languageEnglish
Title of host publicationNeural Information Processing Systems (NIPS 2018)
Number of pages1
Publication statusPublished - 2018

Fields of science

  • 303 Health Sciences
  • 304 Medical Biotechnology
  • 304003 Genetic engineering
  • 305 Other Human Medicine, Health Sciences
  • 101004 Biomathematics
  • 101018 Statistics
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102004 Bioinformatics
  • 102010 Database systems
  • 102015 Information systems
  • 102019 Machine learning
  • 106023 Molecular biology
  • 106002 Biochemistry
  • 106005 Bioinformatics
  • 106007 Biostatistics
  • 106041 Structural biology
  • 301 Medical-Theoretical Sciences, Pharmacy
  • 302 Clinical Medicine

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • Medical Sciences (in general)
  • Health System Research
  • Clinical Research on Aging

Cite this