Electrostatically Induced Recruitment of Membrane Peptides into Clusters Requires Ligand Binding at Both Interfaces

Yuri N. Antonenko, Andreas Horner, Peter Pohl

Research output: Contribution to journalArticlepeer-review

Abstract

Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility DPLL and (ii) by an increased lifetime τPLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither DPLL nor τP changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.
Original languageEnglish
Article numbere52839
Number of pages15
JournalPLOS One
Volume7
Issue number12
DOIs
Publication statusPublished - Dec 2012

Fields of science

  • 103036 Theoretical physics
  • 211904 Biomechanics
  • 103020 Surface physics
  • 210 Nanotechnology
  • 104010 Macromolecular chemistry
  • 106006 Biophysics
  • 106022 Microbiology
  • 106048 Animal physiology
  • 209 Industrial Biotechnology
  • 304 Medical Biotechnology
  • 404 Agricultural Biotechnology, Food Biotechnology
  • 106049 Ultrastructure research
  • 103021 Optics
  • 106002 Biochemistry
  • 104017 Physical chemistry
  • 208 Environmental Biotechnology
  • 104014 Surface chemistry
  • 106023 Molecular biology
  • 107 Other Natural Sciences
  • 301110 Physiology
  • 301206 Pharmacology
  • 206 Medical Engineering
  • 301306 Medical molecular biology
  • 302044 Medical physics
  • 301902 Immunology
  • 305910 Traffic medicine

JKU Focus areas

  • Engineering and Natural Sciences (in general)

Cite this