Abstract
The anisotropic electrocatalytic properties of gold nanobelts and nanoplates enclosed by either {1 1 0} or {1 1 1} facets were studied. Different strategies were used to synthesize these materials. It was found that the {1 1 0} surface of gold does not necessarily show a higher electrocatalytic activity than the {1 1 1} surface. The {1 1 0} surface of gold is more active than the {1 1 1} surface for glucose oxidation in both, neutral and alkaline media. However, for methanol oxidation in alkaline solution, the {1 1 0} surface shows a lower activity than the {1 1 1} surface, which is contrary to the general belief that {1 1 0} facet is the most active surface among the three basal planes. The possible mechanisms are discussed.
Original language | English |
---|---|
Pages (from-to) | 2036-2039 |
Number of pages | 4 |
Journal | Electrochemistry Communications |
Volume | 11 |
DOIs | |
Publication status | Published - 2009 |
Fields of science
- 104005 Electrochemistry
- 104006 Solid state chemistry
- 104014 Surface chemistry
- 104017 Physical chemistry
- 105113 Crystallography
- 105116 Mineralogy
- 503013 Subject didactics of natural sciences
- 204 Chemical Process Engineering
- 204001 Inorganic chemical technology
- 205016 Materials testing
- 210006 Nanotechnology
- 211104 Metallurgy
JKU Focus areas
- Engineering and Natural Sciences (in general)