Downstream analytics quantification of ion release during high voltage anodisation of niobium

Jan Kollender, Cezarina Cela Mardare, Andrei Ionut Mardare, Achim Walter Hassel

Research output: Contribution to journalArticlepeer-review

Abstract

In operando quantification of field-assisted ion release during high-voltage anodisation (up to 100 V SHE) of Nb in 0.1 M sulphuric acid was performed. Electrochemical high-field oxide formation under both potential and current control was studied separately. The quantification of in situ ion release via ICP-MS revealed an increase of the oxide dissolution factor (from 337 to 422 fm V−1) when decreasing the potential scan rate from 200 to 100 mV s−1. Dissolution rates measured during galvanostatic oxide formation allowed measuring oxide dissolution factors of 719 and 837 fm V−1 for current densities of 1.0 and 0.5 mA cm−2, respectively. As compared to the potentiodynamic case, higher dissolution rates and oxide dissolution factors were measured for galvanostatic anodisation. The overall fraction of the charge used for generation of soluble Nb species was below 0.4% for all oxide growth regimes. Cross-sectional SEM imaging proofs an oxide formation factor of 2.1 nm V−1. The surface of anodised films was extremely smooth and featureless without any cracks or voids. Based on X-ray diffraction, the films were found to be amorphous, indicating that no field crystallisation is occurring under the applied oxide growth conditions even at higher voltages.
Original languageEnglish
Pages (from-to)2457–2464
Number of pages8
JournalJournal of Solid State Electrochemistry
Volume22
DOIs
Publication statusPublished - 2018

Fields of science

  • 204 Chemical Process Engineering
  • 205016 Materials testing
  • 210006 Nanotechnology
  • 104014 Surface chemistry
  • 105113 Crystallography
  • 105116 Mineralogy
  • 204001 Inorganic chemical technology
  • 211104 Metallurgy
  • 104005 Electrochemistry
  • 104006 Solid state chemistry
  • 104017 Physical chemistry
  • 503013 Subject didactics of natural sciences

JKU Focus areas

  • Sustainable Development: Responsible Technologies and Management

Cite this