Diverse Hits in De Novo Molecule Design: Diversity-Based Comparison of Goal-Directed Generators

Research output: Contribution to journalArticlepeer-review

Abstract

Since the rise of generative AI models, many goal-directed molecule generators have been proposed as tools for discovering novel drug candidates. However, molecule generators often produce highly similar molecules and tend to overemphasize conformity to an imperfect scoring function rather than capturing the true underlying properties sought. We rectify these two shortcomings by offering diversity-based evaluations using the #Circles metric and considering constraints on scoring function calls or computation time. Our findings highlight the superior performance of SMILES-based autoregressive models in generating diverse sets of desired molecules compared to graph-based models or genetic algorithms.
Original languageEnglish
Pages (from-to)5756 - 5761
Number of pages6
JournalJournal of Chemical Information and Modeling
Volume64
Issue number15
Publication statusPublished - 2024

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this