TY - JOUR
T1 - Discovery of a new class of potent pyrrolo[3,4-c]quinoline-1,3-diones based inhibitors of human dihydroorotate dehydrogenase: Synthesis, pharmacological and toxicological evaluation
AU - Dimitrijević, Marina
AU - Roschger, Cornelia
AU - Lang, Kevin
AU - Zierer, Andreas Florian
AU - Paunović, Milica
AU - Obradović, Ana
AU - Matić, Milos
AU - Pocrnić, Marijana
AU - Galić, Nives
AU - Ćirić, Andrija
AU - Joksović, Milan D.
PY - 2024/6
Y1 - 2024/6
N2 - Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 μM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.
AB - Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 μM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.
U2 - 10.1016/j.bioorg.2024.107359
DO - 10.1016/j.bioorg.2024.107359
M3 - Article
SN - 1090-2120
VL - 147
JO - Bioorganic Chemistry
JF - Bioorganic Chemistry
M1 - 107359
ER -