Abstract
Abstract
Here we present a general approach for the description for the frequency dependent dielectric tensor coefficients for optically anisotropic materials. Based on symmetry arguments we show that the components of the dielectric tensor are in general not independent of each other. For each excitation there exists an eigensystem, where its contribution to the dielectric tensor can be described by a diagonal susceptibility tensor. From the orientation of the eigensystem and the relative magnitude of the tensor elements, the dipole interaction distribution in real space can be deduced. In the limiting cases, the oriented dipole approach as well as the tensor of isotropic and uniaxial materials are obtained. The application of this model is demonstrated exemplarily on triclinic K2Cr2O7 and the orientation and directional distribution of the corresponding dipole moments in real space are determined.
Original language | English |
---|---|
Article number | 073041 |
Number of pages | 11 |
Journal | New Journal of Physics |
Volume | 22 |
DOIs | |
Publication status | Published - Jul 2020 |
Fields of science
- 210006 Nanotechnology
- 103 Physics, Astronomy
- 103020 Surface physics
- 103021 Optics
JKU Focus areas
- Sustainable Development: Responsible Technologies and Management