Abstract
We consider systems A_ell(t )y(q^ell t ) + . . . + A 0 (t )y(t ) = b (t ) of higher order q-recurrence equations with rational coefficients. We extend a method for finding a bound on the maximal power of t in the denominator of arbitrary rational solutions y(t ) as well as a method for bounding the degree of polynomial solutions from the scalar case to the systems case. The approach is direct and does not rely on uncoupling or reduction to a first order system. Unlike in the scalar case this usually requires an initial transformation of the system.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation |
Editors | Michael Burr |
Pages | 325-332 |
Number of pages | 7 |
Publication status | Published - 2017 |
Fields of science
- 101 Mathematics
- 101001 Algebra
- 101005 Computer algebra
- 101009 Geometry
- 101012 Combinatorics
- 101013 Mathematical logic
- 101020 Technical mathematics
JKU Focus areas
- Computation in Informatics and Mathematics