Deficiencies in Hydrological Modelling Practices

Daniel Klotz, Martin Gauch, Grey Nearing, Sepp Hochreiter, Frederik Kratzert

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

The goal of this contribution is to demonstrate deficiencies that we observe in hydrological modelling studies. Our hope is that awareness of potential mistakes, errors, and habits will support accurate communication and analysis — and consequently lead to better modelling practises in our community.
Original languageEnglish
Title of host publicationEGU General Assembly 2022, Vienna, Austria, 23–27 May 2022
Number of pages1
DOIs
Publication statusPublished - 2022

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this