Defect‐Induced Magnetism in Nonmagnetic Oxides: Basic Principles, Experimental Evidence, and Possible Devices with ZnO and TiO\$\_2\$

Pablo Esquinazi, Wolfram Hergert, Markus Stiller, Lukas Botsch, Hendrik Ohldag, Daniel Spemann, Martin Hoffmann, Waheed A. Adeagbo, Angelika Chassé, Sanjeev Kumar Nayak, Hichem Ben Hamed

Research output: Contribution to journalArticlepeer-review

Abstract

The magnetic moment and the magnetic order induced by localized defects, like vacancies, interstitials, and/or nonmagnetic (NM) ions, in a NM oxide atomic lattice are discussed. When the defect concentration is of the order of or larger than 3 at%, magnetic order at room temperature can appear. Herein, the theoretical basic principles needed to understand and compute this new magnetic phenomenon in solids are developed in detail. In particular, the main results of density functional theory (DFT) calculations are used to estimate the magnetization and X-ray magnetic circular dichroism (XMCD) values. The main experimental evidences on this phenomenon are reviewed, especially magnetization, the element-specific XMCD, and transport properties in two selected oxides, ZnO and TiO2 . Emphasis is given on the simplicity and efficiency ion irradiation methods have to trigger magnetic order in these oxides as well as a very sensitive method to characterize magnetic impurities. Two possible applications of this phenomenon are discussed, namely spin filtering at magnetic/NM interfaces in ZnO and perpendicular magnetic anisotropy triggered in TiO2 anatase microstructures. The existing literature on defect-induced magnetism in oxides is shortly reviewed, which provides further evidence on the robustness of this phenomenon in solids.
Original languageEnglish
Article number1900623
Pages (from-to)1900623
Number of pages29
JournalPhysica Status Solidi B: Basic Research
DOIs
Publication statusPublished - 2020

Fields of science

  • 103 Physics, Astronomy

JKU Focus areas

  • Digital Transformation

Cite this