DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

Kristina Preuer, Richard P.I. Lewis, Sepp Hochreiter, Andreas Bender, Krishna C. Bulusu, Günter Klambauer

Research output: Contribution to journalArticlepeer-review

Abstract

While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies.
Original languageEnglish
Pages (from-to)1538–1546
Number of pages9
JournalBioinformatics
Volume34
Issue number9
DOIs
Publication statusPublished - 2017

Fields of science

  • 303 Health Sciences
  • 304 Medical Biotechnology
  • 304003 Genetic engineering
  • 305 Other Human Medicine, Health Sciences
  • 101004 Biomathematics
  • 101018 Statistics
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102004 Bioinformatics
  • 102010 Database systems
  • 102015 Information systems
  • 102019 Machine learning
  • 106023 Molecular biology
  • 106002 Biochemistry
  • 106005 Bioinformatics
  • 106007 Biostatistics
  • 106041 Structural biology
  • 301 Medical-Theoretical Sciences, Pharmacy
  • 302 Clinical Medicine

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • Medical Sciences (in general)
  • Health System Research
  • Clinical Research on Aging

Cite this