Data based fault isolation in complex measurement systems using models on demand

Hajrudin Efendic, Andreas Schrempf, Luigi del Re

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Fault detection in complex plants has to cope with substantial problems due to the very large data amount. In many cases, adequate plant descriptions are not available, so that models has to be built up on line. To achieve this in a sensible time, data have to be sorted and this almost always leads to an information compression. While this proves very helpful to detect faults, it represents a serious obstacle for the identification of the faulty channel, as the existing partial models do not usually span a full measurement space or do it with a very poor condition. This paper proposes to use a double technique to achieve this end, first improving the fault isolation process through a gradient based method, but then recurring to model-on-demand methods which can be used to complete the required measurement space to yield the precise fault channel information.
Original languageEnglish
Title of host publicationSafeprocess 2003
Pages1149-1154
Number of pages6
Publication statusPublished - Jun 2003

Fields of science

  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202034 Control engineering
  • 203027 Internal combustion engines
  • 206001 Biomedical engineering
  • 206002 Electro-medical engineering
  • 207109 Pollutant emission

Cite this