Comparative assessment of interpretability methods of deep activity models for hERG

Johannes Schimunek, Lukas Friedrich, Daniel Kuhn, Sepp Hochreiter, Friedrich Rippmann, Günter Klambauer

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Since many highly accurate predictive models for bioactivity and toxicity assays are based on Deep Learning methods, there has been a recent surge of interest in interpretability methods for Deep Learning approaches in drug discovery [1,2]. Interpretability methods are highly desired by human experts to enable them to make design decisions on the molecule based on the activity model. However, it is still unclear which of those interpretability methods are better identifying relevant substructures of molecules. A method comparison is further complicated by the lack of ground truth and appropriate metrics. Here, we present the first comparative study of a set of interpretability methods for Deep Learning models for hERG inhibition. In our work, we compared layer-wise relevance propagation, feature gradients, saliency maps, integrated gradients, occlusion and Shapley values. In the quantitative analysis, known substructures which indicate hERG activity are used as ground truth [3]. Interpretability methods were compared by their ability to rank atoms, which are part of indicative substructures, first. The significantly best performing method is Shapley values with an area under-ROC-curve (AUC) of ~0.74 ± 0.12, but also runner-up methods, such as Integrated Gradients, achieved similar results. The results indicate that interpretability methods for deep activity models have the potential to identify new toxicophores.
Original languageEnglish
Title of host publication19th International Workshop on (Q)SAR in Environmental and Health Sciences (QSAR2021), Poster Session, June 2021, online
Number of pages1
Publication statusPublished - 2021

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this