Combinatorial Sums: Egorychev's Method of Coefficients and Riordan Arrays

Christoph Fürst

Research output: ThesisMaster's / Diploma thesis

Abstract

G.P. Egorychev introduced a method which transforms combinatorial sums (e.g. sums involving binomial coefficients and also non-hypergeometric expressions arising in combinatorial context) into integrals. These integrals can be simplified using substitution or residue-calculus. With the help of this method one can compute combinatorial sums to which classical algorithms are not applicable. In this thesis we restrict to the residue functional instead of manipulating integral representations.We demonstrate among others how the Lagrange inversion rule can be applied to find closed forms for combinatorial sums. The special focus is laid on sums involving Stirling numbers and Bernoulli numbers that are not that easy to handle in comparison to sums over binomial coefficients. The latter sums can be handled e.g. with the application of Zeilberger’s algorithm. A related notion that will be discussed and used are Riordan arrays, a concept which we also use to handle non-trivial sums.
Original languageEnglish
Place of PublicationHagenberg
Publisher
Publication statusPublished - Mar 2011

Fields of science

  • 101001 Algebra
  • 101002 Analysis
  • 101 Mathematics
  • 102 Computer Sciences
  • 102011 Formal languages
  • 101009 Geometry
  • 101013 Mathematical logic
  • 101020 Technical mathematics
  • 101025 Number theory
  • 101012 Combinatorics
  • 101005 Computer algebra
  • 101006 Differential geometry
  • 101003 Applied geometry
  • 102025 Distributed systems

JKU Focus areas

  • Computation in Informatics and Mathematics

Cite this