Abstract
We investigate experimentally the color stability of high power phosphor converted InGaN LEDs under pulse width modulation (PWM) and continuous current reduction (CCR) dimming modes and for varied operation temperatures. Our measurements reveal that the chromaticity coordinate pathways of the warm white and the cold white LED׳s differ for the same operation conditions. The color deviation- minimizing phenomenon of opposite peak wavelength shifts appears only for a cold white LED under CCR driving mode. This favorable effect does not occur for warm white LEDs. This type of LED exhibits the best color stability under PWM driving mode. The experimental results are consistently explained in terms of the quantum confined Stark effect and temperature induced changes of the LED emission.
Original language | English |
---|---|
Pages (from-to) | 384-389 |
Number of pages | 6 |
Journal | Journal of Luminescence |
Volume | 158 |
DOIs | |
Publication status | Published - Feb 2015 |
Fields of science
- 210006 Nanotechnology
- 103 Physics, Astronomy
- 103011 Semiconductor physics
- 103018 Materials physics
- 202032 Photovoltaics
- 103009 Solid state physics
- 103017 Magnetism
JKU Focus areas
- Engineering and Natural Sciences (in general)