CLOOME: a new search engine unlocks bioimaging databases for queries with chemical structures

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Currently, bioimaging databases cannot be queried by chemical structures that induce the phenotypic effects captured by the image. We present a novel retrieval system based on contrastive learning that is able to identify the chemical structure inducing the phenotype out of ~2,000 candidates with a top-1 accuracy >70 times higher than a random baseline.
Original languageEnglish
Title of host publicationNeural Information Processing Systems Foundation (NeurIPS 2022)
Number of pages1
Publication statusPublished - 2022

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this