Abstract
We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing O(n)- and E(n)-equivariant models. We identify and study the Clifford group, a subgroup inside the Clifford algebra tailored to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional n-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.
Original language | English |
---|---|
Title of host publication | Conference Neural Information Processing Systems Foundation (NeurIPS 2023) |
Number of pages | 69 |
DOIs | |
Publication status | Published - 2023 |
Fields of science
- 305907 Medical statistics
- 202017 Embedded systems
- 202036 Sensor systems
- 101004 Biomathematics
- 101014 Numerical mathematics
- 101015 Operations research
- 101016 Optimisation
- 101017 Game theory
- 101018 Statistics
- 101019 Stochastics
- 101024 Probability theory
- 101026 Time series analysis
- 101027 Dynamical systems
- 101028 Mathematical modelling
- 101029 Mathematical statistics
- 101031 Approximation theory
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102004 Bioinformatics
- 102013 Human-computer interaction
- 102018 Artificial neural networks
- 102019 Machine learning
- 102032 Computational intelligence
- 102033 Data mining
- 305901 Computer-aided diagnosis and therapy
- 305905 Medical informatics
- 202035 Robotics
- 202037 Signal processing
- 103029 Statistical physics
- 106005 Bioinformatics
- 106007 Biostatistics
JKU Focus areas
- Digital Transformation