Projects per year
Abstract
In the last 30 years, many variability modeling approaches have been developed and new ones are still developed regularly. Most of them are only described in academic papers, only few come with tool support. The sheer plethora of approaches, all differing in terms of scope and expressiveness, makes it difficult to assess their properties, experiment with them and find the right approach for a specific use case. Implementing transformations between variability modeling approaches or importers/exporters for tools can help, but are hard to realize without information loss. In this paper, we describe how we derived and implemented transformations between the academically developed Universal Variability Language and the commercially developed pure::variants tool, with as little information loss as possible. Our approach can also be used to optimize constraints, e.g., reduce their number without an effect on the configuration space, using particular capabilities pure::variants provides. Also, via an existing variability model transformation approach, which uses UVL as a pivot language, we enable the transformation of FeatureIDE feature models, DOPLER decision models, and Orthogonal Variability Models into/from pure::variants and back. With our approach, we work towards bridging the gap between academic and industrial variability modeling tools and enable experiments with the different capabilities these tools provide.
Original language | English |
---|---|
Title of host publication | Proceedings of the Fifth International Workshop on Languages for Modelling Variability (MODEVAR 2022), collocated with the 26th ACM International Systems and Software Product Line Conference (SPLC 2022) |
Editors | Alexander Felfernig, Lidia Fuentes, Jane Cleland-Huang, Wesley K.G. Assuncao, Wesley K.G. Assuncao, Clement Quinton, Jianmei Guo, Klaus Schmid, Marianne Huchard, Inmaculada Ayala, Jose Miguel Rojas, Viet-Man Le, Jose Miguel Horcas |
Place of Publication | New York, USA |
Publisher | A |
Pages | 123–131 |
Number of pages | 9 |
ISBN (Electronic) | 9781450392068 |
ISBN (Print) | 978-1-4503-9206-8 |
DOIs | |
Publication status | Published - 12 Sept 2022 |
Publication series
Name | 26th ACM International Systems and Software Product Line Conference, SPLC 2022 - Proceedings |
---|---|
Volume | B |
Fields of science
- 202017 Embedded systems
- 102022 Software development
- 102025 Distributed systems
- 102029 Practical computer science
- 202003 Automation
- 202041 Computer engineering
JKU Focus areas
- Digital Transformation
Projects
- 1 Active
-
Christian Doppler Laboratory for Mastering Variability in Software-intensive Cyber-physical Production Systems (CDL VaSiCS)
Bauer, P. (Researcher), Fadhlillah, H. (Researcher), Gutierrez, A. (Researcher), Kutsia, E. (Researcher), Sharma, S. (Researcher), Sonnleithner, L. (Researcher), Unterdechler, M. (Researcher), Rabiser, R. (PI) & Zoitl, A. (PI)
01.02.2021 → 31.01.2028
Project: Funded research › Other sponsors