Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection

Monika I. Hollenhorst, Rajender Nandigama, Saskia B. Evers, Igor Gamayun, Noran Abdel Wadood, Alaa Salah, Mario Pieper, Amanda Wyatt, Alexey Stukalov, Anna Gebhard, Wiebke Nadolni, Wera Burow, Christian Herr, Christoph Beisswenger, Soumya Kusumakshi, Fabien Ectors, Tatjana I. Kichko, Lisa Hübner, Peter Reeh, Antje MunderSandra-Maria Wienhold, Martin Witzenrath, Robert Bals, Veit Flockerzi, Thomas Gudermann, Markus Bischoff, Peter Lipp, Susanna Zierler, Vladimir Chubanov, Andreas Pichlmair, Peter König, Ulrich Boehm, Gabriela Krasteva-Christ

Research output: Contribution to journalArticlepeer-review

Abstract

Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BC) express functional taste receptors. Here we report that bitter taste signaling in murine BC induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and Substance P that mediate plasma extravasation, neutrophil recruitment and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BC. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among the most abundant members of the complement system, and is needed to combat Pseudomonas aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.
Original languageEnglish
Article numbere150951
Number of pages60
JournalThe Journal of Clinical Investigation
DOIs
Publication statusPublished - May 2022

Fields of science

  • 301206 Pharmacology

Cite this