Bi-objective facility location under uncertainty with an application in last-mile disaster relief

Najmesadat Nazemi, Sophie Parragh, Walter Gutjahr

Research output: Contribution to journalArticlepeer-review

Abstract

Multiple and usually conflicting objectives subject to data uncertainty are main features in many real-world problems. Consequently, in practice, decision-makers need to understand the trade-off between the objectives, considering different levels of uncertainty in order to choose a suitable solution. In this paper, we consider a two-stage bi-objective single source capacitated model as a base formulation for designing a last-mile network in disaster relief where one of the objectives is subject to demand uncertainty. We analyze scenario-based two-stage risk-neutral stochastic programming, adaptive (two-stage) robust optimization, and a two-stage risk-averse stochastic approach using conditional value-at-risk (CVaR). To cope with the bi-objective nature of the problem, we embed these concepts into two criterion space search frameworks, the ϵ-constraint method and the balanced box method, to determine the Pareto frontier. Additionally, a matheuristic technique is developed to obtain high-quality approximations of the Pareto frontier for large-size instances. In an extensive computational experiment, we evaluate and compare the performance of the applied approaches based on real-world data from a Thies drought case, Senegal.
Original languageEnglish
Pages (from-to)1689-1716
Number of pages28
JournalAnnals of Operations Research
Volume319
Issue number2
DOIs
Publication statusPublished - Dec 2022

Fields of science

  • 101015 Operations research
  • 101016 Optimisation
  • 502 Economics
  • 502028 Production management
  • 502017 Logistics
  • 502037 Location planning
  • 502050 Business informatics

JKU Focus areas

  • Digital Transformation
  • Sustainable Development: Responsible Technologies and Management

Cite this