Abstract
There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard ‘dashboard’ of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.
Original language | English |
---|---|
Article number | 5125 |
Number of pages | 10 |
Journal | nature communications |
Volume | 5 |
DOIs | |
Publication status | Published - Sept 2014 |
Fields of science
- 303 Health Sciences
- 304 Medical Biotechnology
- 304003 Genetic engineering
- 305 Other Human Medicine, Health Sciences
- 101004 Biomathematics
- 101018 Statistics
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102004 Bioinformatics
- 102010 Database systems
- 102015 Information systems
- 102019 Machine learning
- 106023 Molecular biology
- 106002 Biochemistry
- 106005 Bioinformatics
- 106007 Biostatistics
- 106041 Structural biology
- 301 Medical-Theoretical Sciences, Pharmacy
- 302 Clinical Medicine
JKU Focus areas
- Computation in Informatics and Mathematics
- Nano-, Bio- and Polymer-Systems: From Structure to Function