Archimedean components of triangular norms

Erich Klement, Radko Mesiar, Endre Pap

Research output: Contribution to journalArticlepeer-review

Abstract

The Archimedean components of triangular norms (which turn the closed unit interval into an abelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordinal sums and additive generators, new types of left-continuous triangular norms are constructed.
Original languageEnglish
Pages (from-to)239-255
JournalJournal of the Australian Mathematical Society
Volume78
DOIs
Publication statusPublished - 2005

Fields of science

  • 101 Mathematics
  • 101004 Biomathematics
  • 101027 Dynamical systems
  • 101013 Mathematical logic
  • 101028 Mathematical modelling
  • 101014 Numerical mathematics
  • 101020 Technical mathematics
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102009 Computer simulation
  • 102019 Machine learning
  • 102023 Supercomputing
  • 202027 Mechatronics
  • 206001 Biomedical engineering
  • 206003 Medical physics
  • 102035 Data science

Cite this