Analysis of camber formation, suppression and control in hot rolling of wedge-shaped slabs by utilizing FEM and analytical concepts

Alexander Kainz, Thomas Pumhössel, Matthias Kurz, Andreas Schiefermüller, Klaus Zeman

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Reducing wedge without generating camber is still a big challenge for today’s process automation systems for hot strip mills. Therefore, detailed transient 3D-models of the underlying severely asymmetric flat hot rolling processes have been developed by the authors with the help of the commercial FEM-package ©Abaqus Explicit. By utilizing suitably positioned edging rolls, the corresponding lateral force acting on the strip induces a lateral material flow inside the roll gap, leading to stress-redistributions such that the outgoing camber-curvature is drastically reduced. Systematic parameter studies performed so far revealed how the lateral edging force and the resulting strip camber-curvature depend on characteristic rolling parameters, such as slab width, thickness, initial wedge and thickness reduction. To understand the underlying highly non-linear elasto-viscoplastic forming processes inside the strip or slab in more detail, and to develop fast simulation-tools, semi-analytical model reduction approaches have been developed. This enables a quantitative analysis of the induced lateral material flow and the occurring stress redistributions inside the roll bite. By introducing a lateral material transfer parameter directly correlated to the camber-curvature, an analytical relation could be derived for the bending moment (and external work) that has to be applied to eliminate the camber of the strip or slab. These analytical predictions, although based on rough simplifications, correspond quite satisfactorily with those attained by 3D-FEM simulations.
Original languageEnglish
Title of host publicationProceedings of the 13th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2015
EditorsDjordje Peric, Michele Chiumenti, Eugenio Onate, D.R.J. Owen
Place of PublicationGran Capitán s/n, 08034 Barcelona, Spain.
PublisherInternational Center For Numerical Methods in Engineering (CIMNE)
Pages694-705
Number of pages12
ISBN (Electronic)9788494424465
ISBN (Print)978-84-944244-6-5
Publication statusPublished - Aug 2015

Fields of science

  • 202007 Computer integrated manufacturing (CIM)
  • 203 Mechanical Engineering
  • 203015 Mechatronics
  • 203022 Technical mechanics
  • 203026 Forming
  • 102005 Computer aided design (CAD)
  • 203006 Production engineering
  • 203013 Mechanical engineering
  • 203014 Machine dynamics

JKU Focus areas

  • Mechatronics and Information Processing

Cite this