An Integrated Evaluation Approach for Performance and Safety of Autonomous Vehicles

Gabriele Zanardo, Thomas Stanger, Dominik Lang, Luigi Del Re

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Cooperative mobility is emerging as a key technology to improve energy efficiency, safety, and road capacity while preserving a high degree of individual freedom. This has attracted a large interest by industry and academia, largely focused on vehicle safety applications, but also on fuel savings by enforcing smoother traffic conditions. More recently, the potentially high benefits in terms of fuel efficiency also for the single traffic participants have been addressed. However, production maturity and public acceptance of cooperative mobility can only be achieved if safety, energy efficiency improvements and compatibility with other traffic participants is demonstrated in a convincing way. Traditionally, similar aims have been tackled using large fleet tests. In the case of cooperative automated driving, the number of use-cases and participants makes this procedure prohibitively expensive. This paper proposes an integrated approach in which a physical engine test bench, a high fidelity vehicle simulator working online and a large scale traffic simulator are connected to provide a representative and fast testing setup able to replace large fleet testing.
Original languageEnglish
Title of host publicationInternational Conference on Connected Vehicles and Expo (ICCVE)
Publication statusPublished - 2013

Fields of science

  • 203 Mechanical Engineering
  • 202034 Control engineering
  • 202012 Electrical measurement technology
  • 206 Medical Engineering
  • 202027 Mechatronics
  • 202003 Automation
  • 203027 Internal combustion engines
  • 207109 Pollutant emission

JKU Focus areas

  • Mechatronics and Information Processing

Cite this