An extension of the method of brackets. Part 1

Ivan Gonzalez, Karen T. Kohl, Lin Jiu, Victor H. Moll

Research output: Contribution to journalArticle

Abstract

The method of brackets is an efficient method for the evaluation of a large class of definite integrals on the half-line. It is based on a small collection of rules, some of which are heuristic. The extension discussed here is based on the concepts of null and divergent series. These are formal representations of functions, whose coefficients $a_n$ have meromorphic representations for $n\in\mathbb{C}$, but might vanish or blow up when $n\in\mathbb{N}$. These ideas are illustrated with the evaluation of a variety of entries from the classical table of integrals by Gradshteyn and Ryzhik.
Original languageEnglish
Pages (from-to)1181-1211
Number of pages31
JournalOpen Mathematics
Volume15
DOIs
Publication statusPublished - 2017

Fields of science

  • 101 Mathematics
  • 101001 Algebra
  • 101005 Computer algebra
  • 101009 Geometry
  • 101012 Combinatorics
  • 101013 Mathematical logic
  • 101020 Technical mathematics

JKU Focus areas

  • Computation in Informatics and Mathematics

Cite this