Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution

Raya A. Bott, Werner Baumgartner, Peter Bräunig, Florian Menzel, Anna-Christin Joel

Research output: Contribution to journalArticlepeer-review

Abstract

To survive, web-building spiders rely on their capture threads to restrain prey. Many species use special adhesives for this task, and again the majority of those species cover their threads with viscoelastic glue droplets. Cribellate spiders, by contrast, use a wool of nanofibres as adhesive. Previous studies hypothesized that prey is restrained by van der Waals' forces and entrapment in the nanofibres. A large discrepancy when comparing the adhesive force on artificial surfaces versus prey implied that the real mechanism was still elusive. We observed that insect prey's epicuticular waxes infiltrate the wool of nanofibres, probably induced by capillary forces. The fibre-reinforced composite thus formed led to an adhesion between prey and thread eight times stronger than that between thread and wax-free surfaces. Thus, cribellate spiders employ the originally protective coating of their insect prey as a fatal component of their adhesive and the insect promotes its own capture. We suggest an evolutionary arms race with prey changing the properties of their cuticular waxes to escape the cribellate capture threads that eventually favoured spider threads with viscous glue.
Original languageEnglish
Article number20170363
Number of pages6
JournalProceedings of the Royal Society B: Biological sciences
Issue number284
DOIs
Publication statusPublished - May 2017

Fields of science

  • 305 Other Human Medicine, Health Sciences
  • 206 Medical Engineering
  • 106 Biology
  • 211 Other Technical Sciences

JKU Focus areas

  • Mechatronics and Information Processing
  • Nano-, Bio- and Polymer-Systems: From Structure to Function

Cite this