A Resource-Efficient SoC Accelerator for Boosted Decision Trees

Jakob Winkler, Michael Lunglmayr

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Modern ensemble learning algorithms based on gradient boosted decision trees such as XGBoost, LightGBM, or CatBoost are known to outperform other machine learning methods, even deep neural networks, for certain use cases. For edge computing, tree-based methods have the attractive property of shifting a large part of the computational complexity from arithmetic operations into memory. However, existing hardware architectures are often exclusively based on on-chip SRAM storage and thus provide very fast throughput and latency for prediction but are inflexible and cannot be adapted to other tasks at runtime. In this work, we propose a flexible hardware architecture for inference of boosted decision trees employing external DRAM for storage, greatly reducing the on-chip resources required and making it suitable for integration into system on a chip (SoC) devices. We present synthesis results targeting an Intel Agilex 7 AGF014 FPGA, highlighting the low resource usage, and show throughput measurements demonstrating the competitive performance even when processing speed is limited by external memory transfer speed. This enables edge AI capabilities even on devices with very limited logic resources.
Original languageEnglish
Title of host publication2024 22nd IEEE Interregional NEWCAS Conference (NEWCAS)
PublisherIEEE
Pages6-10
Number of pages5
ISBN (Electronic)9798350361759
DOIs
Publication statusPublished - Jun 2024

Publication series

Name2024 22nd IEEE Interregional NEWCAS Conference, NEWCAS 2024

Fields of science

  • 202017 Embedded systems
  • 102019 Machine learning
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202015 Electronics
  • 202022 Information technology
  • 202023 Integrated circuits
  • 202028 Microelectronics
  • 202037 Signal processing
  • 202041 Computer engineering

JKU Focus areas

  • Digital Transformation

Cite this