A Method for Template-based Architecture Modeling and its Application to Digital Twins

Daniel Lehner, Jerome Pfeiffer, Stefan Klikovits, Andreas Wortmann, Manuel Wimmer

Research output: Contribution to journalArticlepeer-review

Abstract

Digital Twins (DTs) have recently emerged to support domain experts in engineering and operating Cyber-Physical Systems (CPSs). As a result, software vendors started to create DT services offering advanced functionality to support the development and operation of DTs in industry. However, the integration of services into a DT architecture is challenging. Services typically rely on specific software and modeling languages that are often not interoperable with other services. Hence, they have to be manually integrated which requires a significant, repetitive effort. Thus, currently, it is tedious to extend the DT’s underlying architectures with new services or exchange individual service implementations. In this paper, we propose a tool-supported method for architecture modeling and its application for digital twins. The presented method provides several steps to manage the complexity of current DT architectures. First, DT reference architectures are assembled by connecting DT templates, which provide an abstraction for a set of similar DT services. Second, dedicated DT modules are used to wrap existing services which provide concrete realizations of the DT templates. Third, a product-line-based generator supports the configuration of reference architectures into concrete architectures by selecting an appropriate set of modules for the used templates which are finally used in the derived integration solution. The transition from reference architecture modeling to the product-line-based configuration is supported by a dedicated model transformation. Our evaluation shows that the proposed DT templates enable the efficient modeling of different DT reference architectures and integration of new DT services into already existing architectures.
Original languageEnglish
Pages (from-to)1-14
Number of pages14
JournalJournal of Object Technology
Volume23
Issue number3
Publication statusPublished - Jul 2024

Fields of science

  • 102006 Computer supported cooperative work (CSCW)
  • 102015 Information systems
  • 102016 IT security
  • 102020 Medical informatics
  • 102022 Software development
  • 102027 Web engineering
  • 102034 Cyber-physical systems
  • 509026 Digitalisation research
  • 102040 Quantum computing 
  • 502032 Quality management
  • 502050 Business informatics
  • 503015 Subject didactics of technical sciences

JKU Focus areas

  • Digital Transformation

Cite this