A Machine Learner’s Guide to Streamflow Prediction

Martin Gauch, Daniel Klotz, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, Jimmy Lin

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Although often subconsciously, many people deal with water-related issues on a daily basis. For instance, many regions rely on hydropower plants to produce their electricity, and, at the extreme, floods and droughts pose one of the big environmental threats of climate change. At the same time, many machine learning researchers have started to look beyond their field and wish to contribute to environmental issues of our time. The modeling of streamflow—the amount of water that flows through a river cross-section at a given time—is a natural starting point to such contributions: it encompasses a variety of tasks that will be familiar to machine learning researchers, but it is also a vital component of flood and drought prediction (among other applications). Moreover, researchers can draw upon large open datasets, sensory networks, and remote sensing data to train their models. As a getting-started resource, this guide provides a brief introduction to streamflow modeling for machine learning researchers and highlights a number of possible research directions where machine learning could advance the domain.
Original languageEnglish
Title of host publicationNeural Information Processing Systems Foundation (NeurIPS 2020)
Number of pages7
Publication statusPublished - 2020

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this