A Large-Scale Study of Language Models for Chord Prediction

Filip Korzeniowski, David Sears, Gerhard Widmer

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

We conduct a large-scale study of language models for chord prediction. Specifically, we compare N-gram models to various flavours of recurrent neural networks on a comprehensive dataset comprising all publicly available datasets of annotated chords known to us. This large amount of data allows us to systematically explore hyperparameter settings for the recurrent neural networks—a crucial step in achieving good results with this model class. Our results show not only a quantitative difference between the models, but also a qualitative one: in contrast to static N-gram models, certain RNN configurations adapt to the songs at test time. This finding constitutes a further step towards the development of chord recognition systems that are more aware of local musical context than what was previously possible.
Original languageEnglish
Title of host publicationIn Proceedings of the 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Number of pages5
Publication statusPublished - 2018

Fields of science

  • 202002 Audiovisual media
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102015 Information systems

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Engineering and Natural Sciences (in general)

Cite this