A Game Theory-Based Approach For Modeling Autonomous Vehicles Behavior in Congested, Urban Lane-Changing Scenarios

Nikita Smirnov, Yuzhou Liu, Aso Validi, Walter Morales Alvarez, Cristina Olaverri-Monreal

Research output: Contribution to journalArticlepeer-review

Abstract

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.
Original languageEnglish
Article number1523
Number of pages20
JournalSensors
Volume21
Issue number4
DOIs
Publication statusPublished - Feb 2021

Fields of science

  • 303 Health Sciences
  • 303008 Ergonomics
  • 201306 Traffic telematics
  • 202031 Network engineering
  • 202036 Sensor systems
  • 202038 Telecommunications
  • 202040 Transmission technology
  • 203 Mechanical Engineering
  • 211908 Energy research
  • 211911 Sustainable technologies
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102002 Augmented reality
  • 102003 Image processing
  • 102013 Human-computer interaction
  • 102015 Information systems
  • 102019 Machine learning
  • 102021 Pervasive computing
  • 102024 Usability research
  • 102026 Virtual reality
  • 102029 Practical computer science
  • 102034 Cyber-physical systems
  • 501026 Psychology of perception
  • 501 Psychology
  • 501025 Traffic psychology
  • 201305 Traffic engineering
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202003 Automation
  • 202030 Communication engineering
  • 202034 Control engineering
  • 202035 Robotics
  • 202037 Signal processing
  • 202041 Computer engineering
  • 203004 Automotive technology
  • 211902 Assistive technologies
  • 211909 Energy technology
  • 211917 Technology assessment
  • 501030 Cognitive science

JKU Focus areas

  • Digital Transformation
  • Sustainable Development: Responsible Technologies and Management

Cite this