Abstract
In 2015 Choi, Kim, and Lovejoy studied a weighted partition function, A1(m), which counted subpartitions with a structure related to the Rogers–Ramanujan identities. They conjectured the existence of an infinite class of congruences for A1(m), modulo powers of 5. We give an explicit form of this conjecture, and prove it for all powers of 5.
Original language | English |
---|---|
Pages (from-to) | 35-60 |
Number of pages | 26 |
Journal | Journal of Number Theory |
Volume | 196 |
DOIs | |
Publication status | Published - Mar 2019 |
Fields of science
- 101 Mathematics
- 101001 Algebra
- 101005 Computer algebra
- 101009 Geometry
- 101012 Combinatorics
- 101013 Mathematical logic
- 101020 Technical mathematics
JKU Focus areas
- Digital Transformation