A Comparative Analysis of Evolutionary Learning in Artificial Hydrocarbon Networks

Hiram Ponce, Paulo De Campos Souza

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Artificial hydrocarbon networks (AHN) is a supervised learning model that is loosely inspired on the interactions of molecules in organic compounds. This method is able to model data in a hierarchical and robust way. However, the original training algorithm is very time-consuming. Recently, novel training algorithms have been applied, including evolutionary learning. Particularly, this training algorithm employed particle swarm optimization (PSO), as part of the procedure. In this paper, we present a benchmark of other meta-heuristic optimization algorithms implemented on the training method for AHN. In this study, PSO, harmony search algorithm, cuckoo search, grey wolf optimization and whale optimization algorithm, were tested. The experimental results were done using public data sets on regression and binary classification problems. From the results, we concluded that the best algorithm was cuckoo search optimization for regression problems, while there is no evidence that one of the algorithms performed better for binary classification problems.
Original languageEnglish
Title of host publicationAdvances in Soft Computing
Pages223-234
Number of pages11
Volume12468
DOIs
Publication statusPublished - Oct 2020

Publication series

NameLecture Notes in Computer Science (LNCS)

Fields of science

  • 101 Mathematics
  • 101013 Mathematical logic
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102019 Machine learning
  • 102035 Data science
  • 603109 Logic
  • 202027 Mechatronics

JKU Focus areas

  • Digital Transformation

Cite this