A CMOS Compatible Pyroelectric Mid-Infrared Detector Based on Aluminium Nitride

Christian Ranacher, Cristina Consani, Andreas Tortschanoff, Lukas Rauter, Dominik Holzmann, Clement Fleury, Gerald Stocker, Andrea Fant, Herbert Schaunig, Peter Irsigler, Thomas Grille, Bernhard Jakoby

Research output: Contribution to journalArticlepeer-review

Abstract

The detection of infrared radiation is of great interest for a wide range of applications, such as absorption sensing in the infrared spectral range. In this work, we present a CMOS compatible pyroelectric detector which was devised as a mid-infrared detector, comprising aluminium nitride (AlN) as the pyroelectric material and fabricated using semiconductor mass fabrication processes. To ensure thermal decoupling of the detector, the detectors are realized on a Si3N4/SiO2 membrane. The detectors have been tested at a wavelength close to the CO2 absorption region in the mid-infrared. Devices with various detector and membrane sizes were fabricated and the influence of these dimensions on the performance was investigated. The noise equivalent power of the first demonstrator devices connected to a readout circuit was measured to be as low as 5.3 × 10 − 9 W / Hz .
Original languageEnglish
Article number2513
Number of pages10
JournalSensors
Volume19
Issue number11
Publication statusPublished - 01 Jun 2019

Fields of science

  • 202036 Sensor systems
  • 203017 Micromechanics
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202028 Microelectronics

JKU Focus areas

  • Digital Transformation

Cite this