A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem

Sophie Parragh, Fabien Tricoire, Walter Gutjahr

Research output: Contribution to journalArticlepeer-review

Abstract

In many real-world optimization problems, more than one objective plays a role and input parameters are subject to uncertainty. In this paper, motivated by applications in disaster relief and public facility location, we model and solve a bi-objective stochastic facility location problem. The considered objectives are cost and covered demand, where the demand at the different population centers is uncertain but its probability distribution is known. The latter information is used to produce a set of scenarios. In order to solve the underlying optimization problem, we apply a Benders’ type decomposition approach which is known as the L-shaped method for stochastic programming and we embed it into a recently developed branch-and-bound framework for bi-objective integer optimization. We analyze and compare different cut genera- tion schemes and we show how they affect lower bound set computations, so as to identify the best performing approach. Finally, we compare the branch-and-Benders- cut approach to a straight-forward branch-and-bound implementation based on the deterministic equivalent formulation.
Original languageEnglish
Pages (from-to)419-459
Number of pages41
JournalOR Spectrum
Volume44
DOIs
Publication statusPublished - 2022

Fields of science

  • 101015 Operations research
  • 101016 Optimisation
  • 502 Economics
  • 502028 Production management
  • 502017 Logistics
  • 502037 Location planning
  • 502050 Business informatics

JKU Focus areas

  • Digital Transformation
  • Sustainable Development: Responsible Technologies and Management

Cite this