Where is the cheapest equation?

Activity: Talk or presentationInvited talkunknown

Description

Zeilberger's celebrated method of creative telescoping computes equations for given definite sums or integrals. These equations are linear recurrence or differential equtions of a certain finite order r with polynomial coefficients of some degree d. For designing efficient summation software, it is useful to know in advance for which pairs (r,d) there will exist a solution of order r and degree d. These pairs (r,d) form a certain region in N^2, whose precise shape was not well understood until now. Together with Shaoshi Chen, we have recently determined a curve which provides a surprisingly accurate description of the boundary of this region. We will not make an attempt at explaining our technical derivation of this curve in the talk, but we will show how its knowledge can be used to determine, for example, the pair (r,d) for which the computational cost is minimal. Perhaps surprisingly, it turns out that this is not the pair where r is minimal.
Period26 Sept 2011
Event titleRutgers University
Event typeOther
LocationUnited StatesShow on map

Fields of science

  • 101002 Analysis
  • 101013 Mathematical logic
  • 101001 Algebra
  • 101012 Combinatorics
  • 101020 Technical mathematics
  • 102 Computer Sciences
  • 101 Mathematics
  • 101009 Geometry
  • 102011 Formal languages
  • 101006 Differential geometry
  • 101005 Computer algebra
  • 101025 Number theory
  • 101003 Applied geometry
  • 102025 Distributed systems

JKU Focus areas

  • Computation in Informatics and Mathematics