Scenario Model Predictive Control for Robust Adaptive Cruise Control in Multi-Vehicle Traffic Situations

  • Roman Schmied (Speaker)

Activity: Talk or presentationPoster presentationunknown

Description

Considering multi-lane and multi-vehicle scenarios common adaptive cruise control (ACC) systems often face the problem of sudden and uncomfortable control actions when surrounding vehicles change the lane leading to a switch in the target vehicle of the ACC. Probabilistic modeling of the lane change behavior of surrounding traffic participants allows to predict such lane changes. This enables anticipatory control actions to avoid hard braking maneuvers and hence increases driving comfort and economy. This paper presents a scenario model predictive control (SCMPC) which estimates the lane change tendency of surrounding drivers by drawing a number of scenarios from a stochastic lane change prediction model. The model itself is identified based on real driving data. Simulation results show the advantages of the proposed control strategy by means of comparison to a common PI controlled ACC system.
Period21 Jun 2016
Event title2016 IEEE Intelligent Vehicles Symposium (IV)
Event typeConference
LocationSwedenShow on map

Fields of science

  • 207109 Pollutant emission
  • 202027 Mechatronics
  • 206001 Biomedical engineering
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202034 Control engineering
  • 206002 Electro-medical engineering
  • 203027 Internal combustion engines

JKU Focus areas

  • Mechatronics and Information Processing