On the ubiquity of modular forms and Ap\\\'ery-like numbers, Armin Straub

Activity: Participating in or organising an eventOrganising a conference, workshop, ...

Description

In the first part of this talk, we give examples from the theories of short random walks, binomial congruences, positivity of rational functions and series for $1/\pi$, in which modular forms and Ap\'ery-like numbers appear naturally (though not necessarily obviously). Each example is taken from personal research of the speaker. The second part, which is based on joint work with Bruce C. Berndt, is motivated by the secant Dirichlet series $\psi_s(\tau) = \sum_{n = 1}^{\infty} \frac{\sec(\pi n \tau)}{n^s}$, recently introduced and studied by Lal\'{\i}n, Rodrigue and Rogers as a variation of results of Ramanujan. We review some of its properties, which include a modular functional equation when $s$ is even, and demonstrate that the values $\psi_{2 m}(\sqrt{r})$, with $r > 0$ rational, are rational multiples of $\pi^{2 m}$. These properties are then put into the context of Eichler integrals of general Eisenstein series. In particular, we determine the period polynomials of such Eichler integrals and indicate that they appear to give rise to unimodular polynomials, an observation which complements recent results on zeros of period polynomials of cusp forms by Conrey, Farmer and Imamoglu.
Period09 Oct 2013
Event typeGuest talk
LocationAustriaShow on map

Fields of science

  • 101002 Analysis
  • 101013 Mathematical logic
  • 101001 Algebra
  • 101012 Combinatorics
  • 101020 Technical mathematics
  • 102 Computer Sciences
  • 101 Mathematics
  • 101009 Geometry
  • 102011 Formal languages
  • 101006 Differential geometry
  • 101005 Computer algebra
  • 101025 Number theory
  • 101003 Applied geometry
  • 102025 Distributed systems

JKU Focus areas

  • Computation in Informatics and Mathematics