Learning Analytics Support in Higher-Education: Towards a Multi-Level Shared Learning Analytics Framework

Activity: Talk or presentationContributed talkscience-to-science

Description

Assurance of Learning and Competency-Based Education are increasingly important in higher education, not only for accreditation or transfer of credit points. Learning Analytics is crucial for making educational goals measurable and actionable, which is beneficial for program managers, course instructors, and students. While universities typically have an established tool landscape where relevant data is managed, information is typically scattered across various systems with different responsibilities and often only limited capabilities for sharing data. This diversity, however, significantly hampers the ability to analyze data, both on the course and curriculum level. To address these shortcomings and to provide program managers, course instructions, and students with valuable insights, we devised an initial concept for a Multi-Level Shared Learning Analytics Framework to provide consistent definition and measurement of learning objectives, as well as tailored information, visualization, and analysis for different stakeholders. In this paper, we present the results of initial interviews with stakeholders, devising core features. In addition, we assess potential risks and concerns that may arise from the implementation of such a framework and data analytics system. As a result, we identified six essential features and six main risks to guide further requirements elicitation and development of our proposed framework.
Period03 May 2024
Event titleIn Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024), May 2-4, 2024, Angers, France
Event typeConference
LocationAustriaShow on map

Fields of science

  • 102006 Computer supported cooperative work (CSCW)
  • 102016 IT security
  • 102027 Web engineering
  • 502050 Business informatics
  • 102040 Quantum computing 
  • 102020 Medical informatics
  • 502032 Quality management
  • 503015 Subject didactics of technical sciences
  • 102022 Software development
  • 102034 Cyber-physical systems
  • 102015 Information systems
  • 509026 Digitalisation research

JKU Focus areas

  • Digital Transformation