Description
Vehicle handling and control is an essential aspect of intelligent driver assistance systems, a building block of the upcoming generation of smart cars. A cars handling is affected by (i) technological (engine, suspension, brakes, tires, wheels, steering, etc.), (ii) environmental (road condition, weather, traffic, etc.), and (iii) human (attentiveness, reactiveness, driver agility, etc.) factors, and their mutual interrelationship. In this paper we investigate on how a drivers endeavor for precise steering interferes with lateral acceleration while cornering. Depending on the steering ratio and the cruising speed, we identify that the readiness of a driver to compensate lateral forces exhibits counterintuitive characteristics. A driver body posture recognition technique based on a high resolution pressure sensor integrated invisibly and unobtrusively into the fabric of the driver seat has been developed. Sensor data, collected by two 32x32 pressure sensor arrays (seat- and backrest), is classified according to features defined based on cornering driving situations. Experimental results verify an increased readiness to compensate lateral acceleration with increasing driving speed, but only beyond a certain driver specific break even point. Above intelligent driver assistance, e.g. to improve steering precision, to reduce or avoid over-steer or under-steer, or to proactively notify electronic stability control (ESC), our results also encourage for new modalities in driver-to-car and car-to-roadside interaction.Period | 27 Feb 2008 |
---|---|
Event title | Architecture of Computing Systems - ARCS 2008 |
Event type | Conference |
Location | GermanyShow on map |
Fields of science
- 102024 Usability research