High sensitivity liquid sensing by optimized slot photonic crystal ring resonator

  • Reyhaneh Jannesari (Speaker)

Activity: Talk or presentationContributed talkscience-to-science

Description

In this work we present a design to enhance absorption of infrared light by a fluid analyte being in contact with a slot photonic crystal ring resonator (slot-PCRR). For this purpose, we propose a new PCRR design facilitating higher interaction between guided mode and analyte. These types of PCRRs are based on two-dimensional photonic crystals, which consist of an array of holes in a silicon slab being arranged in a hexagonal lattice. The holes will be filled with liquid analyte. A slot is embedded in this hexagonal ring cavity to create a slot-PCRR. The strong confinement of light in the low index region, occupied by the analyte, is the key advantage of the slot- PCRR. We also calculate the relative intensity change in the transmission spectrum due to the absorption in the analyte. The maximum change obtained is given by a mode which has most of the electromagnetic field energy in the region the region filled with the analyte. Furthermore, this mode is well separated from neighboring bands, which has the advantage that impinging light with specified frequency is less likely to spuriously couple to other modes with the same frequency, which would decrease the amount of energy coupled to desired mode. The slot-PCRR yields a higher relative change due to absorption compared to the PCRR without a slot. In this work, the radii of six rods at the outer PhC were tuned to enhance the quality factor of slot-PCRR. Using these optimum values of radii, the Q-factor rises up to 80000.
Period09 May 2017
Event titleSPIE Microtechnologies 2017
Event typeConference
LocationSpainShow on map

Fields of science

  • 202028 Microelectronics
  • 202027 Mechatronics
  • 202037 Signal processing
  • 202036 Sensor systems
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202021 Industrial electronics
  • 203017 Micromechanics
  • 202019 High frequency engineering

JKU Focus areas

  • Mechatronics and Information Processing