Formale Verifikation von Multiplizierern mit Hilfe von Computeralgebra

  • Daniela Kaufmann (Speaker)

Activity: Talk or presentationInvited talkscience-to-science

Description

Arithmetische Schaltungen werden in Prozessoren zur Implementierung von Boolescher Algebra genutzt. Aufgrund des weitreichenden Einsatzes von Prozessoren ist es äußerst wichtig, die Korrektheit dieser Schaltungen garantieren zu können, um Fehler wie den berühmten Pentium FDIV-Bug zu vermeiden. Mithilfe formaler Verifikation kann festgestellt werden, ob eine Schaltung ihrer gewünschten Spezifikation entspricht. Allerdings stellen arithmetische Schaltungen, insbesondere Integer-Multiplizierer auf Gatterebene, eine Herausforderung für bestehende Verifikationstechniken dar. In dieser Dissertation [Ka20] werden aktuelle Verifikationsmethoden basierend auf Computeralgebra verbessert. Wir zeigen eine rigorose präzise mathematische Formulierung, welche auch die Anwendung der Mathematik in diesem Gebiet erweitert. Außerdem haben wir neue Methoden zur vollautomatischen Verifikation von Integer-Multiplizierern entworfen und implementiert, sowie ein kompaktes Beweisformat entwickelt, um das Ergebnis der Verifikation zertifizieren zu können.
Period30 Sept 2021
Event titleKolloquium GI Dissertationspreis 2021
Event typeOther
LocationGermanyShow on map

Fields of science

  • 202006 Computer hardware
  • 603109 Logic
  • 102 Computer Sciences
  • 102031 Theoretical computer science
  • 102011 Formal languages
  • 102022 Software development
  • 102001 Artificial intelligence