Efficient Linearized Bregman Iteration for Sparse Adaptive Filters and Kaczmarz Solvers

Activity: Talk or presentationPoster presentationunknown

Description

Linearized Bregman iterations are low complexity and high precision approaches for solving the combined l1 /l2 minimization problem. In this work we give a derivation of the linearized Bregman iteration and show the links to Kaczmarz’s algorithm as well as to sparse least mean squares (LMS) filters. We present a novel extension allowing to perform combined l1 /l2 minimization either in an LMS based adaptive filter or in a Kaczmarz based batch solution. By means of simulations we demonstrate that the performance of our extension is comparable to the original linearized Bregman approaches. Furthermore, we show that with this extension l1/l2 minimization can be performed with less complexity than the corresponding l2 minimization.
Period11 Jul 2016
Event titleThe Ninth IEEE Sensor Array and Multichannel Signal Processing Workshop
Event typeConference
LocationBrazilShow on map

Fields of science

  • 202015 Electronics
  • 202037 Signal processing
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202022 Information technology
  • 202041 Computer engineering

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Mechatronics and Information Processing