Computational analysis of stochastic and robust optimization models for capacitated lot sizing under uncertain customer demand

Activity: Talk or presentationContributed talkscience-to-science

Description

This work presents a computational study of two-stage stochastic programming and budget-uncertainty robust optimization for capacitated lot-sizing under uncertain demand. To solve the stochastic models, a Benders decomposition approach is tailored to the problem. The tradeoff between computational time and performance on out-of-sample scenarios is investigated. Managerial insights are provided by analyzing the structure of the obtained production plans and the impact of flexibility in planning.
Period27 Jun 2022
Event titleManufacturing and Service Operations Management Conference 2022
Event typeConference
LocationGermanyShow on map

Fields of science

  • 502 Economics
  • 502028 Production management
  • 502017 Logistics
  • 502050 Business informatics
  • 101016 Optimisation
  • 502037 Location planning
  • 101015 Operations research

JKU Focus areas

  • Digital Transformation
  • Sustainable Development: Responsible Technologies and Management