Classical modular polynomials over GF(2), Petr Lisonek

Activity: Participating in or organising an eventOrganising a conference, workshop, ...

Description

For a prime number l, the classical modular polynomial Phi_l (sometimes called the modular equation of level l) is a polynomial with integer coefficients such that Phi_l(j(t),j(lt))=0 where j(t) is the j-invariant well known from the theory of elliptic functions. While it is difficult to compute Phi_l over the integers due to the rapid growth of its coefficients, there is a beautiful structure emerging if one considers Phi_l over GF(2), where it becomes a sparse polynomial. Even though the modular polynomials considered over GF(2) have important computational applications in elliptic curves cryptography, it appears that the amazing structure of their non-vanishing terms has not been considered in the literature. By considering the power series expansion of j(q), we prove some necessary conditions that a monomial of Phi_l must satisfy in order to have coefficient 1, and we conjecture many more such conditions based on results from our computational investigations.
Period24 Sept 2012
Event typeGuest talk
LocationAustriaShow on map

Fields of science

  • 101002 Analysis
  • 101013 Mathematical logic
  • 101001 Algebra
  • 101012 Combinatorics
  • 101020 Technical mathematics
  • 102 Computer Sciences
  • 101 Mathematics
  • 101009 Geometry
  • 102011 Formal languages
  • 101006 Differential geometry
  • 101005 Computer algebra
  • 101025 Number theory
  • 101003 Applied geometry
  • 102025 Distributed systems

JKU Focus areas

  • Computation in Informatics and Mathematics