A Skew Polynomial Approach to Integro-Differential Operators

  • Markus Rosenkranz (Speaker)
  • Johannes Middeke (Speaker)
  • Georg Regensburger (Speaker)

Activity: Talk or presentationContributed talkunknown

Description

We construct the algebra of integro-differential operators over an ordinary integro-differential algebra directly in terms of normal forms. In the case of polynomial coefficients, we use skew polynomials for defining the integro-differential Weyl algebra as a natural extension of the classical Weyl algebra in one variable. Its normal forms, algebraic properties and its relation to the localization of differential operators are studied. Fixing the integration constant, we regain the integro-differential operators with polynomial coefficients.
Period30 Jul 2009
Event titleISSAC
Event typeConference
LocationKorea, Republic ofShow on map

Fields of science

  • 101013 Mathematical logic
  • 101001 Algebra
  • 101012 Combinatorics
  • 101020 Technical mathematics
  • 101 Mathematics
  • 101009 Geometry
  • 101005 Computer algebra