Dynamically Generated Scalable Vector Graphics (SVG) for Barrier-free Web-Applications

Wolfram Wöß, Kerstin Altmanninger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Many graphics used in Web pages are very attractive to the eye and useful for many people. However, with the extensive use of pixel graphics such as charts without textual description or image maps, Web pages are encountering an ever increasing amount of barriers. There are many developments to aid people with visual impairments to gain access to graphics on the Web but most of these techniques are not universally applicable to other disabilities. It is essential that future development concentrates on accommodating all kinds of disabilities. The use of Scalable Vector Graphics (SVG) provides new possibilities as well as new challenges for the accessibility of Web sites. Consequently, this paper introduces a solution to make all graphics accessible to each usergroup, and visualizes them in the resultant prototype Access2Graphics.
OriginalspracheEnglisch
TitelComputers Helping People with Special Needs: 10th International Conference, ICCHP 2006, Linz, Austria, July 11-13, 2006, Proceedings
Herausgeber*innen Klaus Miesenberger, Joachim Klaus, Wolfgang Zagler, Arthur Karshmer
ErscheinungsortBerlin Heidelberg
VerlagSpringer Verlag
Seiten128-135
Seitenumfang8
Band4061/2006
ISBN (Print)3-540-36020-4
DOIs
PublikationsstatusVeröffentlicht - Juli 2006

Publikationsreihe

NameLecture Notes in Computer Science (LNCS)
ISSN (Print)0302-9743

Wissenschaftszweige

  • 102001 Artificial Intelligence
  • 102006 Computer Supported Cooperative Work (CSCW)
  • 102010 Datenbanksysteme
  • 102014 Informationsdesign
  • 102015 Informationssysteme
  • 102016 IT-Sicherheit
  • 102028 Knowledge Engineering
  • 102019 Machine Learning
  • 102022 Softwareentwicklung
  • 102025 Verteilte Systeme
  • 502007 E-Commerce
  • 505002 Datenschutz
  • 506002 E-Government
  • 509018 Wissensmanagement
  • 202007 Computer Integrated Manufacturing (CIM)
  • 102033 Data Mining
  • 102035 Data Science

Dieses zitieren