Toxicity Prediction using Deep Learning

Aktivität: Vortrag oder PräsentationEingeladener Vortragunbekannt

Beschreibung

Everyday we are exposed to various chemicals via food additives, cleaning, and cosmetic products - and some of them might be toxic. However testing the toxicity of compounds in such products and drug candidates by biological experiments is neither financially nor logistically feasible. Therefore the government agencies NIH, EPA and FDA launched the "Tox21 Data Challenge" to assess the performance of computational methods in predicting the toxicity of chemical compounds. Though deep networks were never applied to tox prediction, they clearly outperformed all other participating methods. Their strength is that they automatically learn features that correspond to well-established toxicophores but in most cases they construct new ones. Our deep learning approach won 9 out of 15 challenges including both panel-challenges (nuclear receptors and stress response) as well as the overall Grand Challenge. Deep learning set a new standard in tox prediction.
Zeitraum28 Mai 2015
EreignistitelDeeL@BiCi: Deep Learning: Theory, Algorithms, and Applications
VeranstaltungstypKonferenz
OrtItalienAuf Karte anzeigen

Wissenschaftszweige

  • 305 Andere Humanmedizin, Gesundheitswissenschaften
  • 102019 Machine Learning
  • 304 Medizinische Biotechnologie
  • 303 Gesundheitswissenschaften
  • 302 Klinische Medizin
  • 301 Medizinisch-theoretische Wissenschaften, Pharmazie
  • 102 Informatik
  • 106005 Bioinformatik
  • 106007 Biostatistik
  • 304003 Gentechnik
  • 106041 Strukturbiologie
  • 102010 Datenbanksysteme
  • 101018 Statistik
  • 106023 Molekularbiologie
  • 106002 Biochemie
  • 102001 Artificial Intelligence
  • 102015 Informationssysteme
  • 101004 Biomathematik
  • 102004 Bioinformatik

JKU-Schwerpunkte

  • Versorgungsforschung
  • Computation in Informatics and Mathematics
  • Klinische Altersforschung
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • MED Allgemein